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Recall that in Chapter 5 we looked at differentiable f : Rn → R and

asked for the extremal points of f restricted to a surface {x : g (x) = 0} for

some g : Rn → Rm. When the extremal points had been found, for example

by Lagrange’s method, we then usually used observation to see if we had a

minimum or maximum or neither.

In this section, with f : U ⊆ Rn → R, we look for extremal values of

f in U . Here U is not a surface within Rn but an open subset. As noted

in Chapter 5 these extremal points are a subset of the critical points which

are easy to find. Much more difficult, and the subject of this section, is to

find a method which indicates whether a given critical point is a minimum

or maximum or neither.

For functions of one variable there is a well-known test for the nature of

a critical point which is given by the sign of the second derivative. Assuming

f ′(a) = 0 if f ′′(a) > 0 then f has a minimum at a , while if f ′′(a) < 0 then f

has a maximum at a. This result can be generalised to functions of severable

variables but to do this we have to consider higher derivatives.

7.1 The Hessian Matrix

The student should look back to the Chapter on Differential Forms to find

the definitions of higher derivatives of functions of several variables and of

Cq -functions. The important result from that section was

Theorem 1 If a function f : U → R where U is open in Rn is of class C2

then
∂2f

∂xj∂xi
=

∂2f

∂xi∂xj

for all i and j.

The important object when looking at extrema is
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Definition 2 Given a scalar-valued function f : U → R of class C2, where

U is open in Rn, we define the Hessian matrix of f at a ∈ U to be the

n× n matrix Hf(a) with (i, j) -th entry ∂2f(a) /∂xi∂xj.

This matrix is symmetric by Theorem 1.

Example 3 Let f(x) = x2y+ y2z+ z2−2x for x ∈ R3. The Hessian matrix

is

Hf(x) =

 2y 2x 0

2x 2z 2y

0 2y 2

 .

�

7.2 Taylor’s Theorem

The Hessian matrix occurs in a natural way within the next important result.

Let f : U ⊆ Rn → R be a scalar-valued function and a ∈ U . Let h ∈ Rn such

that a + h ∈ U . Define the function φ : R → R by φ (t) = f (a + th) for

0 ≤ t ≤ 1. Then Taylor’s Theorem for real-valued, functions of one variable

with continuous derivative implies that, with Lagrange’s form of the error,

φ (t) = φ (0) + φ′ (0) t+ φ′′ (c)
t2

2
, (1)

for some 0 < c < t. The first derivative in (1) is a simple application of the

Chain Rule:

φ′ (0) =
d

dt
f (a + th)

∣∣∣∣
t=0

= ∇f(a) • h.

For the second derivative in (1)

φ′′ (c) =
d

dt
φ′ (t)

∣∣∣∣
t=c

=
d

dt
∇f(a + th) • h

∣∣∣∣
t=c

Here
d

dt
∇f(a + th) • h =

n∑
i=1

hi
d

dt

∂f

∂xi
(a + th) .

The Chain Rule again gives

d

dt

∂f

∂xi
(a + th) =

n∑
j=1

∂2f

∂xj∂xi
(a + th)hj.
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Substituting back,

φ′′ (c) =
n∑

i=1

n∑
j=1

hihj
∂2f

∂xj∂xi
(a + ch) = hTHf(c) h,

where c = a + ch. Return to (1) with t = 1 to find

Theorem 4 Taylor’s Theorem Let f : U ⊆ Rn → R be a function of

class C2 and a ∈ U . Let h ∈ Rnsuch that a + h ∈ U . Then

f(a + h) = f(a) +∇f(a) • h +
1

2
hTHf(c) h, (2)

where c = a + ch for some c : 0 ≤ c ≤ 1.

7.3 Graphs of dimension n within Rn+1

. Given a scalar-valued C2-function f : U ⊆ Rn → R then the graph

S =

{(
x

f(x)

)
: x ∈ U

}
⊆ Rn+1

is a surface as long as Jf(x) is well-defined for all x ∈ U as we now assume.

Let p ∈ S so

p =

(
q

f(q)

)
for some q ∈ U . We can express S around p as{(

q + h

f(q + h)

)
: h ∈ Uq

}
=

{(
q + h

f(q) + Jf(q) h + 1
2
hTHf(c) h

)
: h ∈ Uq

}
.

(3)

where Uq = U − q. This can be compared with Tangent plane to S at p,

p + Tp (S) =

{(
q + h

f(q) + Jf(q) h

)
: h ∈ Rn

}
.

The Tangent Space is of dimension n inside Rn+1 and so has only one

normal direction, N ∈ Rn+1, say. Being normal to Tp (S) means that N•w =

0 for all w ∈ Tp (S). That is

N •

(
h

Jf(q) h

)
= 0 (4)
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for all h ∈ Rn.

If you are on the surface (3) at p and move away then

p→ p +

(
h

Jf(q) h + 1
2
hTHf(c) h

)
.

The component of this change in the normal direction is

N •

(
h

Jf(q) h + 1
2
hTHf(c) h

)
= N •

(
h

Jf(q) h

)
+ N •

(
0

1
2
hTHf(c) h

)

= 0 +N
1

2
hTHf(c) h,

by (4). (Here N is the n+1-th coordinate of N.)

If hTHf(c) h ≥ 0 for all |h| < δ with δ > 0 sufficiently small, then the

component of the surface (3) in the normal direction has the same sign for

all such h. This means that locally to p the surface stays to one side of the

Tangent plane. Similarly if hTHf(c) h ≤ 0 for all sufficiently small h.

If, for all δ > 0 there exists |h1| , |h2| < δ : hT
1Hf(c) h1 > 0 and

hT
2Hf(c) h2 < 0 for some h2 ∈ Rn then locally the surface has parts on

both sides of the Tangent plane.

Though we appear to be getting interesting information from the Hessian

matrix it is difficult to apply this in practice since c depends on h. But, f

is a function of class C2, and so Hf(x) is a continuous function of x. Thus,

for h sufficiently small c will be close to q and hTHf(c) h close in value to

hTHf(q) h. In particular if one is positive then so is the other. Hence, by

looking at the sign of hTHf(q) h for small h we can see whether a surface

lies, locally to one side of the tangent plane or not. We give a name to the

properties of Hessian matrix we are looking for.

Definition 5 Assume A is a symmetric real matrix. We say that

A is positive definite iff vTAv > 0 for all non-zero vectors v,

A is negative definite iff vTAv < 0 for all non-zero vectors v,

A is indefinite if these exists v 6= 0 : vTAv > 0 and there exists v 6=
0 : vTAv < 0,

otherwise A is nondefinite.

4



Note the nondefinite definition covers the cases such as vTAv ≥ 0 for all v

with vTAv = 0 for some non-zero vector v.

If Hf(q) is definite then locally S remains to one side of the Tangent

plane while

If Hf(q) is indefinite then, arbitrarily close to p, S has parts on both

sides of the Tangent Plane .

7.4 Extremum points

Look back at the start of Chapter 5 to find the definitions for local \ strict \maximum

\minimum \ extremum. The important result there was that if f : U ⊆
Rn → R had a local extremum at a then ∇f(a) = 0, i.e. a is a critical point.

Definition 6 A critical point a ∈ U of f is non-degenerate when the

Hessian matrix of f at a is non-singular (i.e. invertible).

When a critical point is non-degenerate, the nature of the critical point

is determined by the Hessian matrix. Return to Taylor’s Theorem which, at

a critical point a, states that for all h : a + h ∈ U ,

f(a + h) = f(a) +
1

2
hTHf(c) h,

where c = a + ch for some c : 0 ≤ c ≤ 1.

From this we see that f(a) is a local strict minimum iff f(a + h) > f(a)

iff hTHf(c) h > 0 for all h 6= 0 sufficiently small. By the observation above

this is equivalent to hTHf(a) h > 0 for all h 6= 0 sufficiently small

Similarly, f (a) is a local strict maximum iff hTHf(a) h < 0 for all h 6= 0

sufficiently small.

Combined with Definition 5 and we have

If Hf(a) is positive definite then f has a local strict minimum at the

critical point a.

If Hf(a) is negative definite then f has a local strict maximum at the

critical point a.

If Hf(a) is indefinite then we say that f has a saddle at the critical

point a.
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Why do we say we have a saddle in the last case?

Perhaps look at the graph of f in Rn+1. The Tangent plane at a critical

point a is {(
a + h

f(a)

)
: h ∈ Rn

}
.

So as we move away from the point p = (a, f(a))T the height, i.e. the n+1-th

coordinate, does not change. But around p the surface can be written as{(
a + h

f(a) + 1
2
hTHf(c) h

)
: h ∈ Rn

}
.

If we find an h1 : hT
1Hf(c) h1 > 0 (equivalent to hT

1Hf(a) h1 > 0) then

the last coordinate increases as we move away in that direction. If we find

an h2 : hT
2Hf(a) h2 < 0 then the last coordinate decreases as we move away

in that direction. This is a property of a saddle.

Return now to

Example 3 continued The critical values of f(x) = x2y + y2z + z2 − 2x

are solutions of

0 = ∇f(x) =

 2xy − 2

x2 + 2yz

y2 + 2z

 .

That is, xy = 1, x2 + 2yz = 0 and y2 + 2z = 0. Multiply the second equation

by x and use the first to get x3 + 2z = 0. Subtract the third equation to find

x3 = y2. Raise the first equation by the third power and use the result just

found to get y5 = 1. Thus y = ±1. In x3 = y2 and we get x = 1. But then

xy = 1 implies y = 1. Finally y2 + 2z = 0 gives z = −1/2. So there is only

one critical point a = (1, 1,−1/2)T .

The Hessian matrix at this critical point is

Hf(a) =

 2 2 0

2 −1 2

0 2 2

 .
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The determinant is −20, i.e. non-zero, and so Hf(a) is non-singular and

hence a is non-degenerate.

Next observe that

eT
1Hf(a) e1 =

(
1 0 0

) 2 2 0

2 −1 2

0 2 2


 1

0

0

 = 2 > 0

while

eT
2Hf(a) e2 =

(
0 1 0

) 2 2 0

2 −1 2

0 2 2


 0

1

0

 = −1 < 0.

Thus Hf(a) is indefinite and a is a saddle point. �

Unfortunately this method requires finding two vectors with different

signs for vTHf(a) v. Is there a method which does not involve a search?
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Tests for Definiteness or otherwise.

Question 1, Given a symmetric matrix A under what conditions is vTAv >

0 for all non-zero vectors v? When is vTAv < 0 for all non-zero vectors v?

Question 2 Given a symmetric matrix A, if there exist vectors v such that

vTAv > 0 and w such that wTAw < 0 how can they be found?

The answer to Question 1 is easily given if A is a 2× 2 matrix.

Theorem 7 Suppose

M =

(
a b

b c

)
.

If detM > 0 then M is positive definite when a > 0 and negative definite

when a < 0. If detM < 0, then M is indefinite. If detM = 0 then M is

nondefinite.

Proof Exercise, but all results when a 6= 0 follow from

(x, y)

(
a b

b c

)(
x

y

)
= a

(
x+

by

a

)2

+
detA

a
y2.

See Appendix �

Notation To ease congestion in the writing we already have

djf(x) =
∂f

∂xj
(x) .

Extend this to higher derivatives by

di,jf(x) =
∂2f

∂xj∂xi
(x) .

I’ve no idea why the order of the subscripts in di,j is the reverse of the

superscripts in ∂2f/∂xj∂xi but just remember that it is so.

Example 8 Find the critical points of

f(x) =
1

3
x3 − 3x2 +

1

4
y2 + xy + 13x− y + 2,

for x ∈ R2, and find if they are local minima, maxima or saddle points.
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Solution The gradient vector is

∇f(x) =
(
x2 − 6x+ y + 13,

y

2
+ x− 1

)T
.

Then ∇f(x) = 0 becomes

x2 − 6x+ y + 13 = 0 and 2x+ y − 2 = 0.

Substitute y = −2x + 2 into the first equation to get x2 − 8x + 15 = 0

which factorises as (x− 3) (x− 5) = 0. This gives two critical points

a1 = (3,−4)T and a2 = (5,−8)T .

The Hessian matrix is

Hf(x) =

(
2x− 6 1

1 1/2

)
.

Then

Hf(a1) =

(
0 1

1 1/2

)
and Hf(a2) =

(
4 1

1 1/2

)
.

By Theorem 7 detHf(a1) = −1 < 0 implies that the matrix Hf(a1) is

indefinite and we have a saddle at a1. Similarly detHf(a2) = 1 > 0 and

4 > 0 together imply that the matrix Hf(a2) is positive definite and we have

a local minimum at a2. �

The situation is more complicated for larger n.

Linear Algebra. The fundamental result for symmetric matrices is the

following.

Theorem 9 If A is a real symmetric n×n matrix then Rn has an orthonor-

mal basis of eigenvectors {v1,v2, ...,vn} satisfying Avi = λivi; the λi are the

eigenvalues of A.

This can be applied immediately to the Hessian matrix evaluated at a

non-degenerate critical point, Hf(a). For this is a real symmetric matrix
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and so has n eigenvalues. If w is an eigenvector with associated eigenvalue

λ then

wTHf(a) w = λwTw = λ |w|2 .

If we can find eigenvalues λ1 > 0 and λ2 < 0 this means that as we

approach a along the line of direction of the first eigenvector w1 we have

wT
1Hf(a) w1 > 0 (a local minimum) while approaching along the second

eigenvector w2 will give wT
2Hf(a) w2 < 0 (a local maximum). We would

then have a saddle point. This answers a question above of how to choose

the directions when examining a critical point.

Example 3 continued For f (x) = x2y+ y2z+ z2− 2x the Hessian matrix

the critical point a = (1, 1,−1/2)T is 2 2 0

2 −1 2

0 2 2

 .

The eigenvalues of this matrix are 2, 1/2 +
√

41/2 and 1/2−
√

41/2. Two

are positive and one negative so a is a saddle point. �

What can we say if the eigenvalues are all of the same sign?

From Linear Algebra we have

Proposition 10 Let A = (aij) be a real symmetric n× n matrix.

A is positive definite if, and only if, all eigenvalues are positive,

A is negative definite if, and only if, all eigenvalues are negative.

If some λk > 0 and some λ` < 0 then A is indefinite.

Proof See Appendix. �

Thus, looking back at the definition of positive and negative definition, we

have

• all eigenvalues positive implies vTHf(a) v > 0 for all non-zero v which

implies a is a local minimum,

• all eigenvalues negative implies vTHf(a) v < 0 for all non-zero v which

implies a is a local maximum.
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Example 8 revisited. For

f (x) =
1

3
x3 − 3x2 +

1

4
y2 + xy + 13x− y + 2,

the critical points are a1 = (3,−4)T and a2 = (5,−8)T . The Hessian matrices

at these points are

Hf(a1) =

(
0 1

1 1/2

)
and Hf(a2) =

(
4 1

1 1/2

)
.

The eigenvalues of Hf(a1) are 1/4 +
√

17/4 > 0 and 1/4−
√

17/4 < 0 so

a is a saddle point.

The eigenvalues of Hf(a2) are 9/4 +
√

65/4 > 0 and 9/4−
√

65/4 > 0 so

a is a local minimum. �

This discussion about eigenvectors and eigenvalues is, in fact, a distraction

since they are difficult to calculate and yet we don’t need to. We only need

to know the signs of the eigenvalues. Is there a simpler method to do this?

Perhaps, but I leave that for the Appendix.

11



Appendix to Section 7

Quadratic Approximations

Taylors Theorem Let f : U ⊆ Rn → R be a function of class C2 and a ∈ U .

Let h ∈ Rn such that a + h ∈ U . Then

f(a + h) = f(a) + Jf(a) h +
1

2
hTHf(c) h,

where c = a + ch for some c : 0 ≤ c ≤ 1.

Thus the Quadratic approximation to f at a might be (replacing c by a)

f(a + h) = f(a) + Jf(a) h +
1

2
hTHf(a) h.

To see how good this approximation is we first state

Lemma 11 If M =
(
aij
)
∈Mn,n (R) then∣∣tTMt

∣∣ < C |t|2

for all t ∈ Rn with C2 =
∑

i,j

(
aij
)2
.

Proof

tTMt = tT


←− r1 −→
←− r2 −→

...

←− rn −→

 t =
(
t1, t2, ..., tn

)


r1 • t

r2 • t

rn • t



=
n∑

i=1

ti
(
ri • t

)
.

Then, by Cauchy-Schwarz,

∣∣tTMt
∣∣2 =

(
n∑

i=1

ti
(
ri • t

))2

≤
n∑

i=1

(
ti
)2 n∑

i=1

(
ri • t

)2
≤ |t|2

n∑
i=1

∣∣ri∣∣2 |t|2 ,
12



by a second application of Cauchy-Schwarz. So the result follows with

C2 =
n∑

i=1

∣∣ri∣∣2 =
n∑

i=1

n∑
j=1

(
aij
)2
.

�

Proposition 12 Let f : U ⊆ Rn → R be a function of class C2 and a ∈ U .

Then, for all ε > 0 there exists δ > 0 such that |c− a| < δ implies∣∣hTHf(c) h− hTHf(a) h
∣∣ < ε |h|2 .

Proof We apply Lemma 11 with

M = Hf(c)−Hf(a) ,

in which case the entries in the matrix M are

aij =
∂2

∂xi∂xj
f(c)− ∂2

∂xi∂xj
f(a) .

Let ε > 0 be given. Then, since f is a C2-class function, there exists

δi,j > 0 such that if |c− a| < δi,j then∣∣∣∣ ∂2

∂xi∂xj
f(c)− ∂2

∂xi∂xj
f(a)

∣∣∣∣ < ε

n
.

Let δ = mini,j δi,j and assume c satisfies |c− a| < δ then the C of Lemma

11 satisfies

C2 =
n∑

i=1

n∑
j=1

(
aij
)2 ≤ n∑

i=1

n∑
j=1

( ε
n

)2
= ε2.

Hence our result follows. �

Corollary 13 Let f : U ⊆ Rn → R be a function of class C2 and a ∈ U .

Then

lim
h→0

f(a + h)− f(a)− Jf(a) h− hTHf(a) h/2

|h|2
= 0.
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Proof Replacing f(a + h) by f(a) + Jf(a) h + hTHf(c) h/2 we have

f(a + h)− f(a)− Jf(a) h− hTHf(a) h/2

|h|2
=

hTHf(c) h− hTHf(a) h

2 |h|2
.

Let ε > 0 be given. By Proposition 12 there exists δ > 0 such that if

|c− a| < δ then ∣∣hTHf(c) h− hTHf(a) h
∣∣

2 |h|2
<
ε |h|2

2 |h|2
=
ε

2
. (5)

Thus, if |h| < δ then c = a + ch for some 0 < c < 1 means |c− a| < δ

and (5) gives ∣∣∣∣f(a + h)− f(a)− Jf(a) h− hTHf(a) h/2

|h|2

∣∣∣∣ < ε.

Hence we have verified the ε-δ definition of limit. �

Lemma 14 If M is a symmetric n× n matrix for which

lim
h→0

f(a + h)− f(a)− Jf(a) h− hTMh/2

|h|2
= 0, (6)

then M = Hf(a).

Proof If M1 and M2 are two symmetric matrices satisfying (6) then

lim
h→0

hTMh

|h|2
= 0 (7)

where M = M1 −M2.

First note that, for 1 ≤ i ≤ n, we have eT
i Mei = aii. So if we look at the

directional limit, choosing h = hei we find that

hTMh

|h|2
=
h2

h2
aii = aii.

Thus (7) implies the diagonal elements aii are zero.
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Next note that eT
i Mej = aij so

(ei + ej)
T M (ei + ej) = aij + aii + ajj + aji

= aij + aji

since the diagonal terms are zero

= 2aij

since the matrix is symmetric. So setting h = h (ei + ej) we will deduce

aij = 0 for all i, j. Hence M = 0, i.e. M1 = M2.

�

In this sense f(a)+Jf(a) h+hTHf(a) h/2 is the best quadratic approximation

to f at a.

Matrices

A result stated without proof in the lectures.

Theorem 7 Suppose

M =

(
a b

b c

)
.

If detM > 0 then M is positive definite when a > 0 and negative definite

when a < 0.

If detM < 0, then M is indefinite.

If detM 6= 0 and a = 0 then M is indefinite if c 6= 0 and nondefinite if

c = 0.

If detM = 0 then M is nondefinite.
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Proof Writing v = (x, y)T , the binary form vTAv equals

(x, y)

(
a b

b c

)(
x

y

)
= ax2 + 2bxy + cy2 = a

(
x+

by

a

)2

− b2y2

a
+ cy2

provided a 6= 0,

= a

(
x+

by

a

)2

+
ac− b2

a
y2

= a

(
x+

by

a

)2

+
detM

a
y2. (8)

First assume that detM 6= 0 along with a 6= 0.

i. If detM > 0 and a > 0 then, from (8), vTMv ≥ 0 for all v and equals 0

only when y = 0 and x + by/a = 0 i.e. x = 0. That is vTAv = 0 iff v = 0.

Hence M is positive definite.

ii. Similarly, if detM > 0 and a < 0 then M is negative definite .

iii. If detM < 0 then the coefficients of (x+ by/a)2 and y2 are of different

sign in which case M is indefinite.

Next assume that detM 6= 0 and a = 0.

iv. If detM 6= 0 and a = 0 and c 6= 0 (which combine to give b 6= 0) then

(x, y)

(
a b

b c

)(
x

y

)
= 2bxy + cy2 = c

(
y +

bx

c

)2

− b2x2

c
.

Whatever the sign of c the coefficients of (y + bx/c)2 and b2x2 will be of

different sign, in which case M is indefinite.

v. If detM 6= 0 and a = c = 0 then

(x, y)

(
a b

b c

)(
x

y

)
= 2bxy,

which can be zero for non-zero vectors (i.e. (0, 1)M (0, 1)T = 0) and so M is

nondefinite.
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vi. Finally, if detA = 0 then vTAv = 0 if v = (−b, a), say, in which case M

is nondefinite. �

Eigenvalues

The fundamental result for symmetric matrices is the following.

Theorem 15 If A is a real symmetric n × n matrix then Rn has an or-

thonormal basis of eigenvectors {v1,v2, ...,vn} satisfying Avi = λivi; the λi

are the eigenvalues of A.

Proof not given. �

To reinforce, the eigenvectors here, vi are taken to be unit vectors. Let

M =

 ↑ ↑ ↑
v1 v2 ... vn

↓ ↓ ↓


be the matrix with eigenvectors in each column. Then matrix multiplication

gives

AM = (Av1, Av2, ..., Avn) = (λ1v1, λ2v2, ..., λnvn) ,

since each vi is an eigenvector of A with eigenvalue λi. Further,

MTAM =


vT
1

vT
2

...

vT
n

 (λ1v1, λ2v2, ..., λnvn) =
(
vT
i λjvj

)
1≤i,j≤n .

Yet

vT
i λjvj = λjv

T
i vj =

{
λj if i = j

0 if i 6= j.

The first case, when i = j, uses the fact that the vectors are of unit length,

so vT
i vi = 1 for all i. The second case uses the fact that different vi are

orthogonal, i.e. vT
i vj = 0 if i 6= j. Thus MTAM = D, where D is the

diagonal matrix with λi in the ii position, 1 ≤ i ≤ n, zero elsewhere.

Note the same argument gives

MTM =
(
vT
i vj

)
1≤i,j≤n = In.

17



Thus MT = M−1. Hence M−1AM = D or, equivalently, A = MDM−1 =

MDMT . Then for any v ∈ Rn we have

vTAv = vT (MDMT )v = (MTv)TD(MTv) = wTDw,

with w = MTv. Therefore

vTAv = wTDw = λ1w
2
1 + λ2w

2
2 + ...+ λnw

2
n.

If all the λi > 0 then vTAv > 0 for all v 6= 0, i.e. A is positive definite.

Conversely, if vTAv > 0 for all v 6= 0 then, given 1 ≤ i ≤ n we can

choose v = vi the i -th eigenvector. Then

0 < vT
i Avi = vT

i λivi since vi is an eigenvector

= λi since vT
i vi = 1.

That is vTAv > 0 for all v 6= 0 implies λi > 0 for all 1 ≤ i ≤ n.

If all λi < 0 then vTAv < 0 for all v 6= 0, i.e. A is negative definite. The

converses of this can easily be shown to hold, giving

Proposition 16 Let A = (aij) be a real symmetric n× n matrix.

A is positive definite if, and only if, all eigenvalues are positive,

A is negative definite if, and only if, all eigenvalues are negative.

If some λk > 0 and some λ` < 0 then, with the eigenvectors vk and v`,

we have vT
kAvk > 0 and vT

` Av` < 0, i.e. A is indefinite.

There is a final case where either all λi ≥ 0 with some λj = 0 or

all λi ≤ 0 with some λj = 0. The matrix would then be nondefinite(
with vj the j -th eigenvector, vT

j Avj = 0
)
. But note from A = MDM−1

that detA = detD = λ1λ2...λn. So the present case is excluded if we assume

detA 6= 0.

The following was seen in Chapter 5.

Example 17 Let f : R3 → R be given by f (x) = x2y2 + z2 + 2x − 4y + z.

Find the critical values of f and determine whether they are extremal values

or saddle points.
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Solution The gradient vector is

∇f(x) =

 2xy2 + 2

2x2y − 4

2z + 1

 .

Solving ∇f(x) = 0 for critical points we have xy2 = −1, x2y = 2 and

z = −1/2. Squaring the second equation gives 4 = x4y2 = −x3, using the

first equation. Thus x = −22/3. In x2y = 2 this gives y = 2−1/3. Hence the

only critical point is a =
(
−22/3, 2−1/3,−2−1

)T
.

The Hessian matrix is

Hf(x) =


y2 4xy 0

4xy x2 0

0 0 2

 .

At the critical point

Hf(a) =


1
2

3
√

2 −4 3
√

2 0

−4 3
√

2 2 3
√

2 0

0 0 2

 .

This is non-singular, in fact detHf(a) = −30 × 22/3, and so a is a non-

degenerate critical point.

The eigenvalues of Hf(a) are 2, 5 3
√

2/4 +
√

265 3
√

2/4 > 0 and 5 3
√

2/4 −√
265 3
√

2/4 < 0 so a is a saddle point. The complicated nature of the eigen-

values are evidence that a simpler method is required.

7.4.1 Principal Minors

Calculating eigenvalues is difficult and we only need to know the signs of

them. Can we deduce anything about the signs of the eigenvectors without

calculating them?

Definition Let A = (aij) be a real, symmetric, n×n matrix. For 1 ≤ ` ≤ n,

form the `×` matrix A` = (aij)1≤i,j≤`. The A` are called the `×` principal

minors of A.
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The connection (if any) between the eigenvalues of A` with ` < n with

the eigenvalues of An = A is not obvious. But we have a weak connection in

Lemma 18 If A is a real symmetric n × n matrix and An−1, the (n−1)×
(n−1) principal minor of A, has n − 1 positive eigenvalues then A has at

least n−1 positive eigenvalues.

Proof The assumption that An−1 has n−1 positive eigenvalues implies An−1

is positive definite.

Since A is symmetric, Rn has an orthonormal basis v1, ...,vn of eigenvec-

tors of A; so Avj = λjvj for 1 ≤ j ≤ n. If the conclusion of the lemma is

false, at least two of the eigenvalues of A, say λ1, λ2 are < 0. Their associated

eigenvalues v1 and v2 satisfy vT
i Avi = λiv

T
i vi < 0 for i = 1, 2.

These v1 and v2 are also linearly independent so we can find a linear

combination w = αv1 + βv2, α, β ∈ R not both zero, such that wn = 0, i.e.

wT =
(
w1, w2, ...., wn−1, 0

)
=
(
wT , 0

)
,

where w ∈ Rn−1,w 6= 0. Then, since v1 and v2 are orthogonal we have

vT
i Avj = λjv

T
i vj = 0

for i 6= j. Thus

wTAw = (αv1 + βv2)
T A (αv1 + βv2)

T

= α2vT
1Av1 + αβ

(
vT
2Av1 + vT

1Av2

)
+ β2vT

1Av1

= α2vT
1Av1 + β2vT

1Av1 < 0.

Yet

wTAw =
(
wT , 0

)
A
(
wT , 0

)T
= wTAn−1w > 0

since An−1 is positive definite. This contradiction means our assumption is

false and at most one eigenvalue of A can be negative. �

The following is the promised test for positive definiteness.

Theorem 19 If A is a symmetric n×n matrix then A is positive definite

if, and only if detA` > 0 for all 1 ≤ ` ≤ n.
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Proof

( =⇒ ) Assume A is positive definite, so all eigenvalues are positive. Then

detA = λ1λ2...λn > 0.

Assume for contradiction that detA` ≤ 0 for some 1 ≤ ` < n. The

matrix A` is still real symmetric and so has ` eigenvalues and detA` is

the product of these. Therefore, since detA` ≤ 0, not all of the eigenval-

ues of A` are positive and thus A` is not positive definite. Thus we can

find a non-zero w0 = (w1, w2, ..., w`) ∈ R` for which wT
0A`w0 ≤ 0. Then

define w = (w1, w2, ..., w`, 0, ..., 0) ∈ Rn. For this it can be checked that

wTAw = wT
0A`w0 ≤ 0 contradicting the fact that A is positive definite.

Hence detA` > 0 for all 1 ≤ ` < n, as required.

(⇐= ) We prove the result for n ≥ 2 by induction.

Base Case If n = 2 then detA2 > 0 and detA1 > 0 translate to detA > 0

and a > 0 where

A =

(
a b

b c

)
.

By Theorem 7 A is positive definite.

Inductive step. Assume that if B is a symmetric (n−1)×(n−1) matrix

and detB` > 0 for all 1 ≤ ` ≤ n−1 then B is positive definite.

Let A be a symmetric n × n matrix with detA` > 0 for all 1 ≤ ` ≤ n,

n ≥ 2.

Then An−1 is a symmetric (n−1)× (n−1) matrix. Thinking carefully

about the definition of principal minor we see that (An−1)` = A` for all

1 ≤ ` ≤ n−1. Thus det (An−1)` = detA` > 0 for such `. Thus we have

that An−1 is a symmetric (n−1)×(n−1) matrix with det (An−1)` > 0 for all

1 ≤ ` ≤ n. Apply the inductive hypothesis with B = An−1 to deduce that

An−1 is positive definite.

We have only used detA` > 0 for ` ≤ n − 1 so we still have detAn > 0,

i.e. detA > 0 to use.

We have An−1 is positive definite and detA > 0. By Lemma 18 An−1

positive definite implies A has at least n−1 positive eigenvalues. But the
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product of all n eigenvalues is detA > 0, so it is impossible for the n -th

eigenvalue to be non-positive. Therefore all eigenvalues of A are positive and

hence A is positive definite.

By induction the result holds for all n ≥ 2. �

So if detHf(a)l > 0 for all 1 ≤ ` ≤ n then f has a local minimum at the

critical point a.

Note that if M is an n× n matrix then det (−M) = (−1)n detM . Hence

Corollary 20 Then A is negative definite iff −A is positive definite iff

det (−A)` > 0, that is (−1)` detA` > 0 for all 1 ≤ ` ≤ n.

So if (−1)` detHf(a)l > 0 for all 1 ≤ ` ≤ n then f has a local maximum at

the critical point a.

If f has neither a local minimum or maximum it is a saddle.

Example 3 continued For f(x) = x2y+ y2z+ z2− 2x the Hessian matrix

at the critical point a = (1, 1,−1/2)T is 2 2 0

2 −1 2

0 2 2

 .

Then detHf(a)1 = det (2) = 2 > 0,

detHf(a)2 = det

(
2 2

2 −1

)
= −6,

and detHf(a)3 = −20.We have neither detHf(a)` > 0 for all ` or (−1)` detHf(a)` >

0 for all `. Hence a is saddle point. �

Returning to Example 17, the function f : R3 → R given by f (x) =

x2y2 + z2 + 2x − 4y + z. has one critical point is a =
(
−22/3, 2−1/3,−2−1

)T
where the Hessian matrix is

Hf(a) =


1
2

3
√

2 −4 3
√

2 0

−4 3
√

2 2 3
√

2 0

0 0 2

 .
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Looking at the determinants of the principal minors

det

(
1

2
3
√

2

)
> 0, det

 1
2

3
√

2 −4 3
√

2

−4 3
√

2 2 3
√

2

 < 0 and detHf(a) < 0.

This again shows that at a there is a saddle point. �
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